Emergent neutrality drives phytoplankton species coexistence.
نویسندگان
چکیده
The mechanisms that drive species coexistence and community dynamics have long puzzled ecologists. Here, we explain species coexistence, size structure and diversity patterns in a phytoplankton community using a combination of four fundamental factors: organism traits, size-based constraints, hydrology and species competition. Using a 'microscopic' Lotka-Volterra competition (MLVC) model (i.e. with explicit recipes to compute its parameters), we provide a mechanistic explanation of species coexistence along a niche axis (i.e. organismic volume). We based our model on empirically measured quantities, minimal ecological assumptions and stochastic processes. In nature, we found aggregated patterns of species biovolume (i.e. clumps) along the volume axis and a peak in species richness. Both patterns were reproduced by the MLVC model. Observed clumps corresponded to niche zones (volumes) where species fitness was highest, or where fitness was equal among competing species. The latter implies the action of equalizing processes, which would suggest emergent neutrality as a plausible mechanism to explain community patterns.
منابع مشابه
Competition Drives Clumpy Species Coexistence in Estuarine Phytoplankton
Understanding the mechanisms that maintain biodiversity is a fundamental problem in ecology. Competition is thought to reduce diversity, but hundreds of microbial aquatic primary producers species coexist and compete for a few essential resources (e.g., nutrients and light). Here, we show that resource competition is a plausible mechanism for explaining clumpy distribution on individual species...
متن کاملCompetition between phytoplankton and bacteria: exclusion and coexistence.
Resource-based competition between microorganisms species in continuous culture has been studied extensively both experimentally and theoretically, mostly for bacteria through Monod and Contois "constant yield" models, or for phytoplankton through the Droop "variable yield" models. For homogeneous populations of N bacterial species (Monod) or N phytoplanktonic species (Droop), with one limiting...
متن کاملToxin-allelopathy among phytoplankton species prevents competitive exclusion
Toxic or allelopathic compounds liberated by toxin-producing phytoplankton (TPP) acts as a strong mediator in plankton dynamics. On an analysis of a set of phytoplankton biomass-data that have been collected by our group in the North-West part of the Bay of Bengal, and by analysis of a three-component mathematical model under a constant as well as a stochastic environment, we explore the role o...
متن کاملCompeting populations in flows with chaotic mixing.
We investigate the effects of spatial heterogeneity on the coexistence of competing species in the case when the heterogeneity is dynamically generated by environmental flows with chaotic mixing properties. We show that one effect of chaotic advection on the passively advected species (such as phytoplankton, or self-replicating macro-molecules) is the possibility of coexistence of more species ...
متن کاملMathematical Modelling of Migrated Phytoplankton Species in an Infected and Toxin Producing Phytoplankton-Zooplankton System
In this paper the dynamical behaviour of toxin producing phytoplankton and zooplankton system is investigated. The toxin producing phytoplankton are divided into two groups: susceptible phytoplankton and infected phytoplankton. Conditions of local stability of various equilibrium points are derived. Further it is observed that the range of toxin liberation parameter increases for the coexistenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 278 1716 شماره
صفحات -
تاریخ انتشار 2011